COMPUTATION OF SUPERSONIC AND LOW SUBSONIC CASCADE FLOWS USING AN EXPLICIT NAVIER-STOKES TECHNIQUE AND THE k-E

نویسنده

  • B. Lakshminarayana
چکیده

A fully explicit two-dimensional flow solver, based on a four-stage Runge-Kutta scheme, has been developed and utilized to predict two-dimensional viscous flow through turbomachinery cascades for which experimental data is available. The formulation is applied to the density averaged Navier-Stokes equations. Several features of the technique improve the ability of the code to predict high Reynolds number flows on highly stretched grids. These include a low Reynolds number compressible form of the k-E turbulence model, anisotropic scaling of artificial dissipation terms and locally varying timestep evaluation based on hyperbolic and parabolic stability considerations. Comparisons between computation and experiment are presented for both a supersonic and a low-subsonic compressor cascade. These results indicate that the code is capable of predicting steady two-dimensional viscous cascade flows over a wide range of Mach numbers in reasonable computation times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AFRL-OSR-VA-TR-2015-0159 Control of Boundary Layers for Aero-optical Applications

This report presents results of systematic experimental studies of various passive mitigation techniques to reduce aero-optical effects caused be turbulent boundary layers. Parametric studies of Large-Eddy BreakUp devices showed that aero-optical distortions can be suppressed by 45% for several boundary layer thicknesses. It was shown that moderate cooling of the wall also reduces aero-optical ...

متن کامل

Numerical Study of a Cascade Unsteady Separation Flow

A CFD solver is developed to solve a 3D, unsteady, compressible Navier-Stokes equations with the Baldwin-Lomax turbulence model to study the unsteady separation flow in a high incidence cascade. The second order accuracy is obtained with the dual time stepping technique. The code is first validated for its unsteady simulation capability by calculating a 2D transonic inlet diffuser flow. Then a ...

متن کامل

A hybrid pressure–density-based algorithm for the Euler equations at all Mach number regimes

In the present work, we propose a reformulation of the fluxes and interpolation calculations in the PISO method, a well-known pressure-correction solver. This new reformulation introduces the AUSM up flux definition as a replacement for the standard Rhie and Chow method of obtaining fluxes and central interpolation of pressure at the control volume faces. This algorithm tries to compatibilize t...

متن کامل

The numerical simulation of turbulent boundary layers and film cooling

A new finite volume algorithm has been developed to solve a variety of flows by using large eddy simulation and direct numerical simulation. This finite volume algorithm was developed using a dual time stepping approach with a preconditioning technique and a new factorization implementation. The method takes the advantage of pressure-based and density-based meth­ ods. Thus, it provides an effic...

متن کامل

A finite-volume algorithm for all speed flows

A new collocated finite volume-based solution procedure for predicting viscous compressible and incompressible flows is presented. The technique is equally applicable in the subsonic, transonic, and supersonic regimes. Pressure is selected as a dependent variable in preference to density because changes in pressure are significant at all speeds as opposed to variations in density which become v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008